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The geometrical optics design of reflectors using complex 
coordinates 
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Mathematics Department, Southampton University, Southampton SO9 5NH, UK 

Received 30 July 1976 

Abstract. The mathematics of reflector design under the geometrical optics approximation 
is treated using complex coordinates. Conformal transformations occur naturally in the new 
formalism and their application to reflector design appears to have great potential. Some 
detailed illustrations are included. 

1. Introduction 

In a recent series of papers on reflector synthesis under the geometrical optics 
approximation two approaches have been used to establish design methods for arbit- 
rary two-variable far-field specification. These methods depend on whether the partial 
differential equations governing the mapping 7 between incident and reflected ray 
directions are elliptic or hyperbolic. 

Westcott and Norris (1975) consider the elliptic case in which a boundary value 
problem is posed and sufficient conditions are derived for its solution. Numerical 
procedures are described in Norris and Westcott (1976). 

The hyperbolic case is solved as an initial value problem in two papers by Brickell 
and Westcott (1976a, b). A numerical method and results are described in Westcott 
and Brickell (1976). 

The present paper shows that the mathematics involved in the previous approaches 
can be simplified and unified by the use of complex coordinates. The new formalism 
makes obvious the fact that 7 can be any analytic (in particular, conformal) mapping. 
Thus complex potential theory can be used in reflector design and the method appears 
to have exciting possibilities. 

The paper is organized in the following way. In § 2 we explain our notation and 
introduce the idea of the distortion of a mapping T of a unit sphere into itself. For 
example, a conformal mapping has uniform distortion. If the mapping 7 is defined by a 
reflector then it must satisfy an integrability condition which is derived in § 3. Analytic 
mappings arise naturally because they automatically satisfy this condition. The other 
basic equations in the theory are also included in 0 3. 

It is important to express properties of the reflector in terms of the mapping 7. Thus 
in 9 4 we find a formula for the positions of the caustic points on a reflected ray and, in 
§ 5 ,  we obtain a formula for the Gaussian curvature of the reflector. There are close 
relations between these and the distortion of 7. 
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In 9 6 we examine a reciprocity that occurs in the general theory. If T is a one-one 
mapping then its inverse also belongs to a reflector. This fact is useful in problems where 
it is natural to use the far-field coordinate as the independent one. 

The last two sections are concerned with the application of complex potential theory 
to reflector design. Some particular models are worked out in detail. 

2. Complex coordinates on the unit sphere 

We begin by summarizing some standard notation associated with complex coordi- 
nates. A complex-valued function f of real variables x ,  y can be writtenf = U + iv where 
U, U are real-valued functions and i = J-1. The partial derivatives are defined by 
f x  = U, fiv,, f, = U, +ivy. 

We can also regard f as a function of the complex variable 77 = x +iy. The relations 
2 x  = 77 + jj, 2iy = 77 - i j  motivate the definitions 

f, = i(fx - if,) = $[U, + v ,  + i(vx - U, )I 
f+ = 4 ( f , + i f , ) = i [ ~ , - v , + i ( ~ i , + ~ , ) ] .  

The equationf+ = 0 is equivalent to the Cauchy-Riemann equations. Consequently 
a functionf satisfying this condition is an analytic function of 77. Similarly, iff, = 0 then 
f is an analytic function of f .  

We denote the conjugate complex function U -iv by f: Its derivatives satisfy the 
relations 

- - 
7, = (fd, 7+ = (fJ. (3) 

The commutativity relationf,,+ =f,,, follows from the equations (1) and (2), both of 

The following lemma will be used in later work. 
these derivatives being equal to one quarter of the Laplacian Af. 

Lemma 1. Let f be a function with continuous derivatives of first order. There exists a 
real-valued function g such that g, =f if, and only if, fi, is real valued. 

Proof. If g exists then f+ = g,, = a Ag and is therefore real valued. Conversely, if fi, is 
real valued then, from equation (l), U, = -U,. Consequently there exists a real-valued 
function 4 such that U = c&, v = -+,,. The function g = 24 satisfies g ,  = f. 

We now explain a standard way of associating a complex coordinate with a point on 
a unit sphere. Let 0 denote the centre of the sphere and choose a rectangular set of axes 
OX, OY, OZ  as in figure 1. Let ( x ,  y, z) be the corresponding Cartesian coordinates. 
Under stereographic projection from the point N of coordinates (0, 0, 1) a point P on 
the unit sphere projects to a point P’ in the plane z = 0. The complex coordinate 7 of P 
is defined as x +iy where (x ,  y, 0) are the Cartesian coordinates of P’. 

The metric on the sphere assumes a simple form in terms of the coordinate 77. To 
show this we first note that the position vector p of P satisfies 

(1 + 177I2)P = (77 +% i(ij -771, I77l2- U, 

(1 + (q12)2p,, = (1 - f 2 ,  -i(l + j j 2 ) ,  2f). 

(4) 
so that its derivative p ,  is the complex-valued vector given by 
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Figure 1. Diagram showing coordinate system. 

It follows from equation (3) that pi = (p,). These formulae enable us to calculate the 
scalar products 

P.PT)=P.P i i=O,  

Prl. Prl = P?i Pii = 0, PT) Pi = 2/(1+ /712)2. 

Consider a curve 7 = 7 (t) on the sphere where t is a real parameter. This curve has a 
tangent vector given by 

and, using the equations (3, we obtain the promised simple formula for its length 

2 - (l+/qj*)-'  l%l= 121 
In the following sections we shall be concerned with a local mapping T of the unit 

sphere into itself. Suppose that T is given by l = l ( v )  in terms of the complex 
coordinates 7 of P and b of Q = T(P). The curve 7 = 7 ( t )  transforms into the curve 
t = [(T(t)) and according to (6), the length of the tangent vector to this curve is 

Using this formula, it can be shown that the circle of unit vectors tangent to the sphere at 
P transforms into an ellipse of tangent vectors at Q whose major and minor axes are of 
lengths 

These numbers measure the distortion of T. We say that T has uniform distortion if 
they are equal. It follows that the mappings of uniform distortion satisfy either si = 0 or 
5, = 0. In the first case l is an analytic function of 7 in the sense of complex variable 
theory and we say that T is analytic. In the second case we say that T is anti-analytic. 
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It is a consequence of the formula (7) that T alters areas by a factor 

(-) I J(r )  I 
where J(T), the Jacobian of T is given by 

3. Basic equations 

In figure 2 a sphere of unit radius and centre 0 is drawn, where 0 is the point source of 
incident rays. The points P, Q are the end points of unit vectorsp, q drawn from 0. The 
unit vector p is in the direction of the incident ray, r = rp is the position vector of the 
point of reflection R, and q is in the direction of the reflected ray. Our aim is to relate 
the far-field power density pattern G(q) and the source power pattern I ( p )  to the 
geometry of the reflector. 

Figure 2. Diagram showing incident and reflected ray directions. 

We obtain first of all the differential equations governing the mapping T: P+ Q. We 
shall use complex coordinates, the coordinates of P, Q being denoted by 17, f respec- 
tively. 

The relation between the power densities implies that T has to alter areas by the 
factor F = I/G. We allow G to be infinite so that F can be zero. Equation (8) leads 
immediately to one of the differential equations 

The differential equation (9) is not the only restriction on 7. We shall see that p = In r 
satisfies a differential equation whose integrability condition gives a second condition 
on T. The law of reflection implies that r - r q  is normal to the reflector surface and 
consequently 

r , . ( r - rq )=O.  
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This condition can be modified to give 

P, = (4 P , ) / A  
where A(7, 5) = 1 - p ,  4. We put 9(q, 5) =-In A so that we can write the above 
equation as 

P, =*,(77, 5(77))* (10) 

A calculation based on equation (4) shows that 

We differentiate to obtain 9, and so express equation (10) as 

1 ii 
5-77 1+I77l2' 

p, =-+- 
It is convenient to write this result as 

L, = 1/(5 - 77) (12) 
where L(7) = ln[r/(l +)77)2)] .  L is a real-valued function and consequently lemma 1 
implies that 

is real valued. 
1 

(l-dZ5+ 
This is the second condition on the mapping 7. 

Conversely, if 7 is a local mapping of a sphere into itself satisfying the conditions (9) 
and (13), corresponding reflectors can be constructed. For, according to lemma 1, there 
exists a real-valued function L ( 7 )  satisfying (12) and the reflector is given (to within a 
multiplicative constant) by 

(14) 
For a given non-zero F one can obtain two types of reflector depending on the 

choice of sign in (9). We shall refer to the choice of the +(-) sign as the hyperbolic 
(elliptic) case respectively. 

Finally in this section we show that the function L satisfies a partial differential 
equation. We can deduce from (12) that 

r = (1 + 177 I*) exp L (77). 

L -=-L25- r )  ,' L,, - L: = -L$,, rln 

Consequently we obtain from equation (9) 

When the variable is replaced by 77 +(l/L,) this equation becomes a partial 
differential equation of second order for L in terms of 77. It is a Monge-Ampbre 
equation of hyperbolic or elliptic type depending on the choice of sign. 

It is obvious that any analytic mapping of the unit sphere into itself satisfies 
condition (13) and therefore belongs to a reflector. A corresponding function F can be 
obtained from equation (9) (with the + sign). This remark may be the basis of a 
powerful method for designing reflectors giving prescribed intensity peaks in the far 
field. We shall discuss this further in 00 7 and 8. 



250 F Brickell, L Marder and B S Westcott 

We will say that a reflector has uniform distortion if the corresponding mapping 7 

has uniform distortion. A property of reflectors designed using analytic mappings is 
that they all have uniform distortion. It is natural to ask if there are other reflectors with 
this property. According to the work in 0 1 7 has to be anti-analytic, that is (, = 0. In 
this case condition (13) is not automatically satisfied and imposes severe restrictions on 
7. It can be shown that 7 is necessarily of the form 

5 = (af  + b ) / ( c f  + d )  

where a, b, c, d are constants satisfying certain further restrictions. 

4. Caustics 

The caustic surface of a reflector is the locus of the points where the intensity is infinite. 
There are two such caustic points on each reflected ray, although one or both of them 
may be virtual, that is situated behind the reflector. We shall obtain a formula for the 
positions of these points in terms of the mapping 7. 

In our calculations we shall use the function 'P introduced previously. We have 
already seen that 

- 
1 77 

5-77 1+1771 
q, =- +i= ( 4 * P , ) / A .  

Similarly 

As ZI' is real we can obtain the derivatives Ye, 'Pc by taking complex conjugates (see 
equation (3)). We also need the following formulae which can be obtained from 
equation (16): 

q , ~  = 0 q,'Pf+ ( p ,  . qf)/A. (19) 

w(77, A)=r(77)+(A -r(77))4(5(77)). 

To obtain : caustic points we introduce the function 

As A varies the point whose position vector is w ( q , A )  describes the reflected ray 
corresponding to the incident ray of coordinate 77. In general, given a point of position 
vector s there are unique values of 77, A for which w ( q ,  A )  = s. The caustic points are 
those for which this uniqueness breaks down. Consequently the caustic points are given 
by those values of 77, A for which the vectors w,, we and wA = q are linearly dependent. 

We have to calculate w,. Using equation (10) we find that 

w, = r('P, (P - 4)  +PI, 1 + (A - r)(f,q, + 8.41). 

W, .q = r(-A'P, + p ,  . 4 )  = 0, 

(20) 
The relations ( 5 )  (but withp, 1) replaced by q, 5 )  together with equation (16) show that 

w , . q = o .  
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It follows that the condition for the caustic points reduces to the linear dependence of 
the vectors w,, we. It also follows that we can write 

- 
w, = aq, + bqi; (2 1) 

la1 = lbl (22) 

w,j = Cr4,- + bq,. 

Thus the caustic points are determined by the condition 

and our task is reduced to calculating expressions for a and b. 
By using the appropriate scalar products on equation (21) we find that 

2a = (w, qr)(1+ 1 ~ 1 ’ ) ~ ~  2b = (w, qr)( l+ IlI’)’. 
Then a calculation starting from equation (20) and making use of the formulae (9, (17), 
(18), (19) and (11) shows that 

We shall modify the formula for b in order to introduce le instead of f v .  This is possible 
because the integrability condition (13) implies that 

r , / ( d - i i ) ’ = k / ( Y - d 2  
and consequently 

r;, = IY- 7 ~ 4 ~ , j / ( ~  - 77)4. 

At this stage it is convenient to define the expressions 

The expression Z (which is real valued) can be introduced into the formula forb to give 

We can now obtain our formula for the positions of the caustic points. Suppose that 
a caustic point lies on a reflected ray at a distance K r  from the point of reflection. 
Remembering that Z is real valued we find from equation (22) that 

K = 1/(2 f IZ’I). 

We denote these values by K ~ ,  K ~ .  It follows from equation (9) that 

The caustic points are real or virtual according as the values of K are positive or 
negative. Thus in the hyperbolic case there is just one real caustic point on each 
reflected ray. In the elliptic case there are two if C > 0 and none if Z < 0. 

We also point out that the absolute values IK1(,  1 ~ ~ 1  are the reciprocals of the extreme 
values of the distortion of T (see equation (7)). 
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5. Reflector curvature 

There is a simple formula for the Gaussian curvature of the reflector surface in terms of 
the mapping 7. We shall outline the calculations involved in obtaining this formula. 

The matrix y of the first fundamental form of the reflector surface is defined by 

I. r,, . r,, r,, . r, 
Y = [  r,, . r, r,.  r, 

The matrix H of the second fundamental form is defined by 

where n, the unit normal vector to the reflector surface is given by 

n = (4 - p ) / ( 2 ~ ) ~ ” .  

The Gaussian curvature of the reflector is equal to det H/det y. We remark that 
positive Gaussian curvature at a point R implies that, in a neighbourhood of R, the 
surface lies entirely on one side of the tangent plane at R. Negative Gaussian curvature 
implies that the surface lies on both sides of the tangent plane. 

Calculations similar to those in 0 3 lead to the formulae 

H= 

where X, X’ are defined by the equations (23). It is then easy to show that the Gaussian 
curvature of the reflector surface is equal to 

(1 +F+2X)/4r2. (25) 

We point out that we can use the equations (24) to write this expression as 

6. The reciprocal reflector 

In this section we shall suppose that the function F = I /G  is non-zero. Equation (9) 
shows that the Jacobian J(T) is non-zero and therefore, at least locally, 7 admits an 
inverse mapping x. Consequently we may use 5 as the independent variable. We find 
that 

5- = -7-J Jk )  = 1/J(7), rl c (7) 
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so that the equation (9) and the condition (13) can be expressed as 

and 

2qc is real valued 
1 

(77 -5) 
where D = G/I. 

It is clear from these relations that the mapping ,y corresponds to a reciprocal 
reflector for which 4 is in the direction of the incident ray and p is in the direction of the 
reflected ray. The function G ( [ )  becomes the incident field intensity and 1 ( ~ )  becomes 
the far field intensity. 

Let ;([) be the length of the radius vector of this reciprocal reflector. The 
real-valued function M ( [ )  = ln[;/(l+ I[[')] will satisfy M, = 1/(7 -[) which corres- 
ponds to equation (12). The Monge-Ampbre equation corresponding to equation (15) 
is 

where the variable 77 has to be replaced by [ + ( l/ML). 
In some problems of reflector design it is convenient to work with the far-field 

variable [ as the independent variable. Then the equations in this section replace those 
in 0 2. Although they do not use complex coordinates this is essentially the method used 
by Westcott and Norris (1975). They introduce a function p (defined by equation (13) 
in their paper) and show that p satisfies a Monge-Amphre equation. It can be shown 
that p is just the function (3-l. The Monge-Ampbre equation satisfied by p can be 
deduced from our equation (26). 

7. Applications of conformal mapping 

In this section we exploit the fact that every analytic function J(q)  generates a reflector, 
for which (9) determines the power density ratio 

D = GI-' =F', 

The mapping 7 is conformal when f,, # 0 and this suggests an approach to reflector 
design using standard properties of conformal maps. The question arises: given 
D(q, [), can we determine ((7) satisfying (9) with [* =0, f,, # @ ?  Two theorems in 
complex variable theory indicate that, as it stands, such an approach is too restrictive to 
have wide application. 

Theorem 1: maximum-minimum modulus principle. Let the function f(q) be analytic 
on a domain which comprises a simple closed curve C and its interior. Let f (7 )  # 0 
inside C. The maximum and minimum values of 1 f(7)) in the domain occur on C. 

Theorem 2: Koebe's distortion theorem. If c(v)  is analytic and f,, # 0 on the disc 1q1< 1, 
then all boundary points of the image domain under the mapping 7 + [(v) are at a 
distance of at least :1f,,(O)l from f ( 0 )  (see Bieberbach 1953). 
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Theorem 1 (with f = 5,) effectively precludes the occurrence of peaks and troughs in 
D at interior points of the far-field power density pattern. And Koebe’s theorem sets a 
lower limit on possible values of D on the central ray incident on a reflector which 
subtends a solid circular cone at the source, if the boundary of the far-field cone is given. 

To overcome these constraints we can generalize in two ways. First, we may allow 
5(7) to possess poles (5 is meromorphic but not necessarily analytic) or branching 
singularities, with the proviso that 5 is to be rendered single valued where necessary by 
choice of branch. Physically, the latter statement means that each incident ray is 
reflected in one, and only one, direction. Secondly, we observe that for practical 
purposes the requirement (in fact not made in 00 1-4) that r have a unique inverse is 
unrealistic. (The simplest case of a many-one mapping arises in the production of a 
parallel beam by a parabolic reflector.) Thus, 5, may possess zeros. 

Finally we remark that in the case of uniform distortion our theory permits the 
identification of 5 as a complex potential for a two-dimensional vector field. Used in 
conjunction with the existing extensive literature of classical field theory it may provide 
a powerful tool for use in two-variable far-field reflector design, and we suggest that this 
method of attack lends itself to much further development. 

Some models are considered in the next section. In each instance the cone of the 
reflector is assumed circular and the central ray is reflected through a right angle. We 
adopt a standard orientation for the reflector relative to the Cartesian axes OXYZ, in 
which the central ray is incident along -02 and is reflected in the direction OY. 
Primed variables are used consistently for the standard orientation. For example, q,5 
are related to the spherical polar coordinates (a, p ) ,  (e, q5)  of the points P, Q on the unit 
sphere by the formulae 

7 =cot(&) e”, t = cot(te) ei’ (27) 

and the last condition is that a’ = T + 8’ = ;T, q5‘ = ;T, or equivalently 7’ = 0 + 5’ = i. 
The boundary of the reflector cone has an equation of the form a’ = a: or 17’1 = c = 
cot(&:) (figure 3). 

z 
t 

Figure 3. Domains of coordinates. 
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A re-orientation of the reflector and source by rotation about an axis through 0 is 
achieved by a Moebius transformation on the sphere of the form 

where the constants a, b satisfy the normalization la Iz+ lbI2 = 1. Because the Moebius 
transformation is itself conformal, the mapping between domains on the sphere remains 
conformal under re-orientation. The source and far-field patterns undergo the same 
rigid motion on the sphere, and hence we have D‘(q’, f ’ )  = D(q,  f ) .  

For computational purposes we have found useful the re-orientation 

Equation (29) represents a rotation -;T of the system about 0 Y, followed by a rotation - a ~  about 02, and is derived from (28) by the conditions 0 -f (1 - i)/ J 2 ,  i -* (1 + i) /J2.  
Domains of the coordinates (relating to the example in 0 8.2) are shown in figure 3. 

A function l ’ (vf )  defines a model in standard orientation, and  CY, p ) ,   CY, p )  may be 
obtained from (27) ,  (29). 

The equation of the reflector surface is obtained using (14). 

8. Some examples 

8.1. The parallel beam 

In standard orientation the reflected rays are represented on the unit sphere by the 
single point l‘ = i which is also the equation of the mapping r, and the cone of incident 
rays is represented by )q’1 zs c. Multiple reflections are avoided if the domains of q’, 5’ 
do not overlap, i.e. if 0 < c < 1. 

By (9), D’(v’, i) is infinite. In the geometrical optics approximation this situation is 
permissible because D is a ratio of energy area densities rather than of net energies in 
the far-field and incident domains, and the conservation of total energy is assured for 
any mapping by virtue of an integrated form of the area-relating property (8). 

The equation of the reflector surface is 
R’  dqff --> r f  = 1(1+ lq‘1’) exp( 2 Re  I 

i-q” 

according to (12), (14), where 1 is a positive real constant. The integrand is analytic 
because the domain of q ’  excludes the point i. On performing the integration, (30) 
becomes 

r f  = /(I + /q’I2)[1 +i(q’- +’) + lqrl’]-l 

which can be written using (27) 

l/r‘ = 1 -sin CY’ sin p‘, 

the equation of a paraboloid of revolution with semi-latus-rectum 1, axis O Y  and vertex 
x = o , y = - -  :1, 2 = 0. 
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The Gaussian curvature of the surface is given by (25)  with F = 0 and (because of 
(23 ) )  Z = 0, 

KG = 1/4rl2. 

8.2. The complex potential 

5' = i + K-' ln[(a + ~ ' ) / ( a  - 77')]. 
In two-dimensional field theory, if K, a are constants (K real; K, a # 0) and the 

principal value of the logarithm is taken, (31)  represents the vector field due to a line 
source/sink pair situated at the points 77' = *a, where &has poles and the field strength 
1g1.1 is infinite. Regarded as a mapping r for the reflector in standard configuration we 
have D'(*a, l ' (*a))  = 0 if the points * a  lie within the domain of 77'. 

Write v '=ha eip', where we take A, a real and positive, so that OGA ~ c / a ,  
OGp'C27r. Equation (31 )  becomes, with ( '=x'+iy',  

I + A  e'@' 
exp{K[x' + i(y ' - l ) ] }  = 1 - A  eip" 

If c/a 3 1 ,  real values of 7' map onto a region which contains the entire line y'-  1 = 0 
and therefore the maximum angular diameter of the cone of reflected rays is at least 
180". We shall exclude this case, setting c <a. In particular, for definiteness we have 
made numerical calculations for the model where c = 0.268 (corresponding to a 
reflector cone semi-angle of 30") and a = 0027. 

By (32) ,  the mapping is symmetric about the lines x '  = 0, y '  = 1 in the complex plane, 
the g' domain being roughly elliptical with 'minor axis' along y ' =  1 .  The most 
interesting feature of the model is the existence of two peaks in the value of D' at the 
extremities of the minor axis, at the points 

2 ac 
y ' =  y ;  = 1 *K1 tan-' - = 1 * 1.563 K-'. (33 )  

The constant K now governs the scale of the system. A diagram for the case K = 22, 
chosen to produce an angular separation of 8" between the peaks on the far-field sphere 
is shown in figure 4 ,  and is typical. Symmetry in the complex plane is not acccurately 
preserved under stereographic projection onto the unit sphere. 

The peak values of D may be expressed in terms of the value Do on the central ray 
(e' = 4' = $r). They are given by 

( a  2 - c2) 
x' = 0, 

the larger value relating to the positive sign in (33) .  
Reflector cross sections are shown in figures 5 and 6 .  

8.3. A model with n peaks at  interior points 

The mapping r :  

[;,= K ( ~ ' - u J ( ~ ' - u J . .  . (7 ' -an) ,  (34 )  
where the a are distinct constants with la,] b c  ( p  = 1 , 2 ,  . . . , n )  and K is an arbitrary 
non-zero constant, defines a system in which D is infinite at the n prescribed points 
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- I , I 

, 
# 
I I \5 4 
I 

*Image of reflector 
,’ boundary 

98 

I 

I 
I 

, /5 % 
, I 

I I - 
1 

, , 

Figure 4. Constant-D contours (labelled in decibels) against reflected ray direction for the 
example of 5 8.2. 

r 

Figure 5. Central reflector cross section (a = ~ / 2 )  for the example of 18.2 showing edge 
rays. 

77‘ = ap in the incident power density pattern. The far-field images of these points are 
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Figure 6. Constant-p reflector cross sections for the example of 5 8.2. The full curves are 
labelled for values of P(deg). 

We consider the case n = 3, with 

a, = a  exp[2(p - l).rri/3] 

l k , = K ( 7 7 ' 3 - ~  3 ) 

( P  = 1 ,2 ,3 )  

where a is a non-zero constant, so that (34) becomes 

and the mapping r is ~ ' + l ' :  
I' = i ++K77'(qf3 - 4a3) .  

The image points of 77' = a, lie symmetrically on a circle in the complex plane, being 
given by l[,) - i = -' 4Ka 3ap. 

The constants K and a determine the orientation and scale of the far-field beam 
pattern as well as (for example) Do on the central ray 5' = [ ' ( O )  = i, which also governs 
taper. Choosing one peak, &, to correspond to the point 8'=$.rr+S,  4' =+T, we 
arrange for this peak to be at angular distance S ( S  > 0) from the reflected central ray. 
Thus, 

& = i  cot(:.rr+$S) =(l-$lKa41)i 

and 

4 4 Do=------ 
J[;,(O))* -" 

which determine IKI, la1 in terms of Do, 8, and require further that Ka4 be positive 
imaginary. The only remaining freedom lies in the orientation of aI  on the circle 
177'1 = la/, and is of little interest. 

Figure 7 shows the D contours in the beam pattern, following re-orientation (29), in 
terms of 8, 4 for the case K = 14.2i, a = -0,2853, for which S is approximately 4". The 
reflector cone semi-angle (which must in any case exceed 2 tan-'la)) is taken to be 35". 
Within the three loops in the image of the reflector cone boundary the inverse mapping 
has two branches; elsewhere it is single valued. Use of (25) shows that the Gaussian 
curvature is finite at each point of the reflector surface. Additionally, we have 
calculated the principal curvatures and find that these, too, are finite, The calculation is 
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Figure 7. Constant-D contours (labelled in decibels) against reflected ray direction for the 
example of 8 8.3. 

lengthy and is omitted. The central reflector cross section ((U = 90') is drawn in figure 8, 
and the departure of the p -constant cross sections from arcs of circles is shown in figure 
9, by plotting ( r  - r ( a = f r r ) ) / r ( o r = t r r )  against a. 

An outstanding problem, now under active consideration, is the following generali- 
zation of this model for arbitrary n. Can a mapping be found which produces infinite 
peaks in D, with arbitrary taper, at selected points in the far-field power density 
pattern? 

r 

Figure 8. Central reflector cross section (a = 7r/2) for the example of 5 8.3 showing edge 
rays. 
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-0 O L L  

Figure 9. Departure of constant-@ reflector cross sections from circular arcs. The full curves 
are labelled for values of @(deg); ro=  r(==hm1. 

8.4. An anti-conformal example: the quadric of revolution 

The equation 

l/r’= 1 -e  sin a’ sin p‘ (36) 
represents a quadric of revolution with its major axis (axis of symmetry) aligned along 
OY, with one focus at 0 and eccentricity e ( e  > 0). Except in the case e = 1 (the example 
of 98.1) a reflecting surface of this class does not correspond to a conformal mapping 7. 

The result follows by consideration of (12) and (14) and because the real-valued 
function L(7’) = ln[r’/(l + 17’12)] is harmonic in the conformal case; a simple calculation 
using (27) shows that this obtains only when e = 1. Indeed, when the primed coordi- 
nates a’, p’ are expressed in terms of 7’  using (12) we find that 

L,.= (5’-7’)-’= - ( f ’+ ie) [ l+ l~’I2+ie(~’ - f ’ ) ] - ’  
or 

ief’- 1 t’=- 
f ’+ ie  

which shows explicitly that the mapping is always anti-conformal. (The orientation of 
the quadric has been chosen for simplicity. For e # 1 the orientation is not standard, 
however, because S’(0) # i.) The mapping is always one of uniform distortion (see 9 3). 

The spherical reflector about 0 is a special case of (36), with e = 0, and the last 
equation reduces to t‘ = - l / f ’ ,  confirming that incident and reflected rays occupy 
antipodal points on the unit sphere. 
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